

Dottorato in Ingegneria dell'Informazione Curriculum: Biomedical, Electronics, and Telecommunications Engineering

Machine Learning approaches in Predictive Medicine using Electronic Health Records data

PhD Candidate: Michele Bernardini

Tutor: Prof. Emanuele Frontoni Co-Tutor: Luca Romeo

XXXIII cycle - 2019/2020

Introduction

Research topic

Machine Learning approaches in Predictive Medicine using Electronic Health Records data

Introduction

Problem statement

Introduction

Agenda

□ Type 2 diabetes (T2D) \rightarrow FIMMG dataset

Discovering the Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Support Vector Machine, *JBHI*, 2019

□ Insulin resistance (IR) \rightarrow FIMMG dataset

- TyG-er: An ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records, CBM, 2019
- Early temporal prediction of Type 2 Diabetes Risk Condition from a General Practitioner Electronic Health Record: A Multiple Instance Boosting Approach, AIM, 2020

□ Chronic kidney disease (CKD) → mFIMMG dataset

A Semi-Supervised Multi-Task Learning Approach for Predicting Short-Term Kidney Disease Evolution, *JBHI*, 2020

□ Covid-19 → RISC-19 ICU registry

Predicting 5-day SOFA score at ICU admission in COVID-19 patients, JAMA, 2020 [Under review]

Bernardini M., Romeo L., Misericordia P., and Frontoni E., Discovering the Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Support Vector Machine, IEEE Journal of Biomedical and Health Informatics, 2019

Federazione Italiana Medici di Famiglia

Experimental procedure

<u>Case I</u>

Is the SB-SVM approach able to predict T2D pathology using all set of EHR features?

Case II

Is the SB-SVM approach able to predict T2D pathology using only a subset of EHR features collected before T2D clinical diagnosis?

Case III

Is the SB-SVM approach able to predict T2D pathology using only a subset of EHR features collected before T2D clinical diagnosis within a uniform age group of subjects?

Dataset description Count (%) Mean (std) Total patients: 2433 Control patients 2208 (0.91) Diabetic patients 225 (0.09) Total features 1841 Fields Count (%) Mean (std) Demographic Gender: -Male 1186 (0.49) Female 1247 (0.51) $58.00(\pm 23.58)$ Age (years) <60 1374 (0.56) 60-80 535 (0.22) >80 524 (0.22) Monitoring Blood pressure (mmHg) - $135.52(\pm 17.21)$ Systolic 3 Diastolic 3 $80.83(\pm 8.65)$ Clinical **Pathologies** 877 **Exemptions** 70 396 Exams 490 Drugs

Bernardini M., Romeo L., Misericordia P., and Frontoni E., Discovering the Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Support Vector Machine, IEEE Journal of Biomedical and Health Informatics, 2019

IR

CKD

Conclusions

Experimental results

 $\tilde{\mathbf{O}}$

T2D

Introduction

X 1 7

		CA	SE I	CAS	SE II	CASE III	
Work	Model	Recall%	AUC%	Recall%	AUC%	Recall%	AUC%
	Baseline	mean std	mean std				
[16], [18], [21]	SVM Lin	74.12 (4.02)	81.68 (5.60)	71.29 (3.65)	78.99 (4.30)	58.55 (5.80)	64.48 (5.39)
[16], [18], [21]	SVM Gauss	71.96 (4.22)	81.98 (4.84)	68.34 (4.41)	76.29 (4.40)	55.62 (8.08)	62.74 (9.22)
[18]	KNN	69.23 (4.97)	70.97 (5.06)	68.56 (5.57)	71.04 (6.09)	54.50 (7.16)	59.80 (8.10)
[17], [18], [20]	DT	80.99 (3.34)	87.79 (4.17)	72.98 (4.54)	77.56 (4.85)	58.98 (8.37)	61.87 (7.77)
[18], [20], [22]	RF	77.81 (5.66)	86.30 (4.24)	68.08 (6.36)	75.70 (4.61)	57.33 (5.74)	61.96 (9.47)
	Sparse SVM						
	SB-SVM	81.89 (4.03)	91.04 (4.16)	74.64 (4.18)	81.43 (3.20)	65.33 (5.69)	68.90 (5.84)
[24]	SCAD SVM	67.61 (4.41)	70.78 (4.20)	54.98 (4.09)	60.09 (4.13)	50.83 (9.97)	54.08 (10.41)
[25]	1-norm SVM	82.47 (3.47)	90.21 (3.65)	71.10 (4.27)	77.46 (5.76)	60.73 (7.15)	65.35 (8.38)
	Resampling						
[23]	DT + SMOTE	75.79 (4.72)	82.03 (2.73)	67.07 (3.06)	67.57 (4.26)	57.77 (8.67)	60.73 (10.35)
[22]	RF + SMOTE	71.63 (4.93)	86.34 (4.07)	58.15 (4.34)	77.10 (3.84)	57.66 (6.15)	68.57 (7.06)
	Features selection						
[16]	Ttest + LR ridge	80.91 (2.90)	89.81 (3.35)	73.14 (3.36)	78.89 (4.58)	61.35 (3.11)	67.47 (6.81)
[16]	Ttest + SVM Lin	76.81 (3.11)	88.99 (4.02)	72.42 (3.67)	79.00 (4.32)	54.07 (4.36)	60.56 (8.47)
[16]	Ttest + SVM Gauss	78.49 (3.07)	85.87 (4.34)	73.78 (2.62)	80.39 (4.02)	54.65 (7.23)	62.58 (5.15)
[16], [17]	ReliefF + LR ridge	83.02 (4.09)	91.39 (3.68)	74.03 (4.84)	80.34 (3.13)	57.54 (9.20)	66.66 (5.38)
[16], [17]	ReliefF + SVM Lin	84.21 (3.24)	91.24 (3.34)	74.36 (3.50)	81.01 (2.71)	58.23 (6.85)	66.16 (7.63)
[16], [17]	ReliefF + SVM Gauss	83.90 (3.15)	91.85 (2.97)	74.11 (2.38)	80.74 (1.84)	59.77 (5.27)	65.74 (6.53)
[16]	RFE-SVM + LR ridge	72.43 (5.27)	72.54 (5.31)	52.64 (1.51)	52.81 (1.67)	56.26 (4.12)	56.28 (4.24)
[16]	RFE-SVM + SVM Lin	71.87 (5.46)	72.26 (5.14)	52.27 (1.83)	52.31 (1.83)	55.23 (3.33)	55.50 (3.34)
	Deep Learning						
[43]	MLP	67.90 (3.55)	77.53 (4.31)	58.52 (5.43)	67.03 (6.31)	54.25 (5.37)	56.89 (7.72)
[44]	DBN	77.23 (4.23)	89.32 (3.47)	66.82 (5.91)	78.50 (6.97)	61.22 (10.26)	66.78 (14.68)

Bernardini M., Romeo L., Misericordia P., and Frontoni E., Discovering the Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Support Vector Machine, IEEE *Journal of Biomedical and Health Informatics*, 2019

 \mathbf{D} IR \mathbf{D} CKD \mathbf{D} Covid-19

Conclusions

Experimental results

 $\tilde{\mathbf{v}}$

T2D

Introduction

11/

Rank	Case I	Case II	Case III
1	HbA1c (EP)	Age	Arterial hypertension(stage II, III) (E)
2	Age	Mean diastolic (BP)	Weight (\vec{EP})
3	Gfr using MDRD formula (EP)	Max diastolic (BP)	Arterial hypertension(none organ damage) (E)
4	Metformin (D)	Mean systolic (BP)	Creatinine clearance (EP)
5	Heart failure (P)	Arterial hypertension (P)	Fundus oculi (EP)
6	Microalbuminuria (EP)	Max systolic (BP)	Aorta aneurysm (P)
7	Insulin glargine (D)	Min diastolic (BP)	Moxifloxacin (D)
8	Arterial hypertension (P)	Min systolic (BP)	Myasthenia gravis (P)
9	Hyperlipidaemia/Dyslipidaemia (P)	Creatinine clearance (EP)	Netilmicin (D)
10	Cancer pancreas (P)	Heart failure (P)	Myasthenia gravis (E)

Bernardini M., Romeo L., Misericordia P., and Frontoni E., Discovering the Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Support Vector Machine, IEEE Journal of Biomedical and Health Informatics, 2019

IR

CKD Covid-19

IR-1

Objective

Bernardini M., Morettini M., Romeo L., Frontoni E., and Burattini L., TyG-er: an Ensemble Regression Forest Approach for Identification of Clinical Factors related to Insulin Resistance Condition using Electronic Health Records, *Computers in Biology and Medicine, 2019*

IR-1

Federazione Italiana Medici di Famiglia

Bernardini M., Morettini M., Romeo L., Frontoni E., and Burattini L., TyG-er: an Ensemble Regression Forest Approach for Identification of Clinical Factors related to Insulin Resistance Condition using Electronic Health Records, *Computers in Biology and Medicine*, 2019

Bernardini M., Morettini M., Romeo L., Frontoni E., and Burattini L., Early temporal prediction of Type 2 Diabetes Risk Condition from a General Practitioner Electronic Health Record: A Multiple Instance Boosting Approach, Artificial Intelligence in Medicine, 2019

IR-2

11/

Introduction

Federazione Italiana Medici di Famiglia

Conclusions

Experimental results

Baseline	Асси	racy	F	1	Prec	ision	Red	call	AU	С	
	yesTyG	noTyG	7.60%								
DT	0.77	0.67	0.72	0.60	0.75	0.61	0.71	0.61	0.79	0.64	
RF	0.77	0.68	0.72	0.57	0.74	0.61	0.72	0.58	0.84	0.66	4.18%
Boost	0.76	0.70	0.71	0.59	0.73	0.62	0.72	0.59	0.82	0.58	4.12%
KNN	0.69	0.63	0.57	0.49	0.62	0.50	0.58	0.51	0.64	0.56	
SVM lin	0.73	0.67	0.68	0.62	0.70	0.63	0.68	0.62	0.75	0.66	3.90%
SVM lasso	0.77	0.65	0.70	0.57	0.76	0.60	0.70	0.57	0.80	0.63	
SVM Gauss	0.70	0.70	0.41	0.41	0.35	0.35	0.50	0.50	0.50	0.50	
Majority vote	Accu	racy	F	1	Preci	ision	Rea	call	AU	С	3.77%
indjointj vote	yesTyG	noTyG	3 73%								
DT	0.78	0.68	0.74	0.62	0.74	0.65	0.76	0.66	0.84	0.74	
RF	0.77	0.65	0.73	0.57	0.73	0.60	0.75	0.59	0.83	0.69	3 71% HDL cholesterol
Boosting	0.79	0.70	0.74	0.61	0.75	0.63	0.75	0.62	0.87	0.68	a2 globulin
KNN	0.63	0.60	0.50	0.42	0.51	0.41	0.52	0.46	0.64	0.54	Bosophils
SVM lin	0.75	0.64	0.69	0.57	0.70	0.59	0.71	0.60	0.81	0.65	3.56%
SVM lasso	0.77	0.66	0.69	0.57	0.71	0.59	0.70	0.59	0.81	0.66	
SVM Gauss	0.63	0.66	0.38	0.39	0.31	0.33	0.50	0.50	0.46	0.50	
MIL-Boost	Accu	racy	F	1	Prec	ision	Red	call	AU	C	2.96%
	yesTyG	noTyG	γ GT								
	0.83	0.70	0.81	0.68	0.82	0.69	0.83	0.70	0.89	0.71	PSA Others

Bernardini M., Morettini M., Romeo L., Frontoni E., and Burattini L., Early temporal prediction of Type 2 Diabetes Risk Condition from a General Practitioner Electronic Health Record: A Multiple Instance Boosting Approach, Artificial Intelligence in Medicine, 2019

CKD

Covid-19

IR Č

T2D

SS-MTL x

Objective

11/

Introduction

<u>AIM</u> : Predi disease ma supervised	ction of rker) base (SSL) an	eGFR ed on id mu	inde a fu Ilti-tasl	x (kidr sed se k learn	ney mi- ing	
eGFR= <i>f</i> (cre	eatinin, sex	, age)		—		
CKD stage eGFR [ml/min/1.73m ²]	%				
I \geq 90: n	ormal	35				
II 60–89:	mild reduction	31				
IIIa 45–59:	mild-moderate reduc	59				
IIIb 30–44:	moderate-severe	9				
IV 15–29:	sever reduction	5				
V < 15: K	idney failure	0.4	1			
	Pathologies	Drugs	Exams	Lab tests	Overall	Overall*
Predictors	38	309	135	50	494	496
Total samples	5660	9533	9530	7479	6829	6829
Labeled samples	707	1853	1887	1877	1833	1833
Unlabeled samples	4953	7680	7643	5602	4996	4996

T2D

Conclusions

Bernardini M., Romeo L., Frontoni E., and Amini M. R., A Semi-Supervised Multi-Task Learning Approach for Predicting Short-Term Kidney Disease Evolution, IEEE Journal of Biomedical and Health Informatics, 2021

IR

C)

CKD

Covid-19

CKD

Experimental procedure

Bernardini M., Romeo L., Frontoni E., and Amini M. R., A Semi-Supervised Multi-Task Learning Approach for Predicting Short-Term Kidney Disease Evolution, IEEE Journal of Biomedical and Health Informatics, 2021

CKD

Experimental results

		Overall			Overall*	
k	Field	Predictors	W [%]	Field	Predictors	W [%]
)	D	Valsartan and diuretics	3.78	М	Age	44.85
2)	D	Colecalciferol (vitamin D3)	3.59	D	Furosemide	3.26
)	D	Levothyroxine	3.17	D	Metformin	2.42
()	D	Alfuzosin	3.16	D	Amlodipine	1.40
5)	D	Lansoprazole	3.08	D	Ramipril and amlodipine	1.38
5)	D	Furosemide	2.89	D	Valsartan and diuretics	1.32
7)	D	Acetylsalicylic acid	2.78	D	Pravastatin	1.28
3)	D	Pantoprazole	2.67	D	Atorvastatin	1.27
9	E	Interview and evaluation	2.51	D	Bisoprolol	1.19
))	D	Nebivolol	2.28	D	Omeprazole	1.16
		Others	70.09		Others	40.47

Covid-19

Bernardini M., Romeo L., Frontoni E., and Amini M. R., A Semi-Supervised Multi-Task Learning Approach for Predicting Short-Term Kidney Disease Evolution, IEEE Journal of Biomedical and Health Informatics, 2021

Conclusions

Montomoli J., Romeo L., Moccia S., **Bernardini M**., Migliorelli L., Donati A., Carsetti A., Garcia P., Fumeaux T., Guerci P., Schuepbach R., Frontoni E., RISC-19-ICU Investigators, Hilty M., Predicting 5-day SOFA score at ICU admission in COVID-19 patients: a proof-of-concept study using prospectively collected data from 1613 patients in the RISC-19-ICU registry, *Journal of the American Medical Association, 2020 [Under Review]*

CKD

IR

T2D

Covid-19

Conclusions

 $\langle | \rangle$

Introduction

Montomoli J., Romeo L., Moccia S., **Bernardini M**., Migliorelli L., Donati A., Carsetti A., Garcia P., Fumeaux T., Guerci P., Schuepbach R., Frontoni E., RISC-19-ICU Investigators, Hilty M., Predicting 5-day SOFA score at ICU admission in COVID-19 patients: a proof-of-concept study using prospectively collected data from 1613 patients in the RISC-19-ICU registry, *Journal of the American Medical Association, 2020 [Under Review]*

IR

× 1 /

CKD

Covid-19

Conclusions

 $\langle | \rangle$

Introduction

T2D

Covid-19

Experimental procedure

 $\langle | \rangle$

Introduction

RISK-19 ICU registry: https://www.risc-19-

Classification Task

Target variable: SOFA variation at day 5 $\Delta_{5,0} = Sofa_5 - Sofa_0$

• worsening:
$$\Delta_{5,0} > = +2$$

• *improvement:*
$$\Delta_{5,0} < = -2$$

T2D

Regression Task

Target variable: SOFA value at day 5

Input/Predictors

Patient characteristics (laboratory exams) at the time of ICU admission University of

Zurich^{ण्य∺}

Conclusions

Model

CKD

XGBoost (XGB)

Covid-19

Montomoli J., Romeo L., Moccia S., **Bernardini M**., Migliorelli L., Donati A., Carsetti A., Garcia P., Fumeaux T., Guerci P., Schuepbach R., Frontoni E., RISC-19-ICU Investigators, Hilty M., Predicting 5-day SOFA score at ICU admission in COVID-19 patients: a proof-of-concept study using prospectively collected data from 1613 patients in the RISC-19-ICU registry, *Journal of the American Medical Association*, *2020* [Under Review]

IR

× 1 /

Covid-19

Experimental results

Montomoli J., Romeo L., Moccia S., **Bernardini M**., Migliorelli L., Donati A., Carsetti A., Garcia P., Fumeaux T., Guerci P., Schuepbach R., Frontoni E., RISC-19-ICU Investigators, Hilty M., Predicting 5-day SOFA score at ICU admission in COVID-19 patients: a proof-of-concept study using prospectively collected data from 1613 patients in the RISC-19-ICU registry, *Journal of the American Medical Association, 2020 [Under Review]*

Experimental results

Covid-19

Regression Task

Classification Task

University of

Zurich^{ण्ट∺}

Montomoli J., Romeo L., Moccia S., **Bernardini M**., Migliorelli L., Donati A., Carsetti A., Garcia P., Fumeaux T., Guerci P., Schuepbach R., Frontoni E., RISC-19-ICU Investigators, Hilty M., Predicting 5-day SOFA score at ICU admission in COVID-19 patients: a proof-of-concept study using prospectively collected data from 1613 patients in the RISC-19-ICU registry, *Journal of the American Medical Association*, *2020 [Under Review]*

Conclusions

Final considerations

• High-dimensional & heterogeneous data were managed during the preprocessing stage (i.e., features selection, standardization, outliers detection);

• Unbalanced setting was managed by adopting specific optimization metrics and/or optimal thresholds for the posterior probabilities of the decision function;

• Sparse labeling of the predictors was managed with standard static data imputation techniques (i.e, extra-values, mean, median, K-Nearest Neighbors (KNN)), while sparse labeling of the targets was managed by proposing semi-supervised learning (SSL) techniques;

• Temporal ambiguity was managed by proposing different experimental configurations (i.e., time-invariant, stacked-temporal, Multiple Instance Learning (MIL), Multi-Task Learning (MTL) with temporal relatedness/constraints);

• Interpretability/explainability of the results was managed offering always a features importance ranking of the most discriminative predictors to clinically understand the outcome of the ML model;

• Generalization was managed by adopting regularization strategies.

Conclusions

Open challenges

Introduction

These healthcare ecosystems of predictive precision medicine are not yet being used at a large scale.

The removal of several obstacles could accelerate this transformation process:

- 1. The first obstacle is the preprocessing stage (i.e., data cleaning, preparation, and standardization);
- 2. The second obstacle is the ongoing need to build layers of abstraction that permit various users to interact with ML frameworks at their own knowledge level;
- 3. The third obstacle is the commonization of components.User-friendly ML frameworks should be designed as modular blocks and selected depending on the objective of the clinical task.

T2D IR CKD CKD Covid-19

Journal

- Liciotti D., Bernardini M., Romeo L., and Frontoni E., A Sequential Deep Learning Application for Recognising Human Activities in Smart Homes, *Neurocomputing 396 (2020): 501-513*
- Bernardini M., Romeo L., Misericordia P., and Frontoni E., Discovering the Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Support Vector Machine, *IEEE Journal of Biomedical and Health Informatics 24.1 (2019): 235-246*
- Bernardini M., Morettini M., Romeo L., Frontoni E., and Burattini L., TyG-er: An ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records, *Computers in Biology and Medicine 112 (2019): 103358*
- Bernardini M., Morettini M., Romeo L., Frontoni E., and Burattini L., Early temporal prediction of Type 2 Diabetes Risk Condition from a General Practitioner Electronic Health Record: A Multiple Instance Boosting Approach, *Artificial Intelligence in Medicine (2020): 101847*
- Frontoni E., Romeo L., **Bernardini M.**, Moccia S., Migliorelli L., Paolanti M, Ferri A., Misericordia P., Mancini A., Zingaretti P., A Decision Support System for Diabetes Chronic Care Models Based on General Practitioner Engagement and EHR Data Sharing, *IEEE Journal of Translational Engineering in Health and Medicine 8 (2020): 1-12*
- Bernardini M., Romeo L., Frontoni E., and Amini M. R., A Semi-Supervised Multi-Task Learning Approach for Predicting Short-Term Kidney Disease Evolution, *IEEE Journal of Biomedical and Health Informatics (2021)*

International Conference

- Calamanti C., Cenci A., Bernardini M., Frontoni E., and Zingaretti P. A Clinical Decision Support System for Chronic Venous Insufficiency. In ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017
- Calamanti C., Paolanti M., Romeo L., **Bernardini M.**, and Frontoni E. Machine learning-based approaches to analyse and improve the diagnosis of endothelial dysfunction. In ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018 [best paper award]
- Frontoni E., Loncarski J., Pierdicca R., **Bernardini M.**, and Sasso M., Cyber physical systems for industry 4.0: Towards real time virtual reality in smart manufacturing. *In International Conference on Augmented Reality, Virtual Reality and Computer Graphics, 2018*
- Paolanti, M., Placidi, V., **Bernardini, M.**, Felicetti, A., Pietrini, R., and Frontoni, E., An agent-based WCET analysis for Top-View Person Re-Identification. *In International Workshop on Real Time compliant Multi-Agent Systems (RTcMAS), IJCAI-ECAI, 2018 [oral presentation]*

International Conference

- Bernardini M., Ferri A., Migliorelli L., Moccia S., Romeo L., Silvestri S., Tiano L., and Mancini A., Augmented Microscopy for DNA Damage Quantification: a Machine Learning Tool for Environmental, Medical and Health Sciences. In 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2019
- Migliorelli L., Cenci A., **Bernardini M.**, Romeo L., Moccia S., and Zingaretti P. A cloud-based healthcare infrastructure for neonatal intensive-care units. *In 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2019*
- Ferri A., Rosati R., **Bernardini M.**, Gabrielli L., Casaccia S., Romeo L., Monteriù A., and Frontoni E., Towards the Design of a Machine Learning-based Consumer Healthcare Platform powered by Electronic Health Records and measurement of Lifestyle through Smartphone Data. *In IEEE 23rd International Symposium on Consumer Technologies, 2019*

Under review

 Montomoli J., Romeo L., Moccia S., Bernardini M., Migliorelli L., Donati A., Carsetti A., Garcia P., Fumeaux T., Guerci P., Schuepbach R., Frontoni E., RISC-19-ICU Investigators, Hilty M., Predicting 5-day SOFA score at ICU admission in COVID-19 patients: a proof-of-concept study using prospectively collected data from 1613 patients in the RISC-19-ICU registry, *Journal of the American Medical Association, (2020)*

